LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2011

MT 5406 - COMBINATORICS

Date	•	12-11	-2011
Time	:	9:00 -	12:00

Dept. No.

Max.: 100 Marks

SECTION-A

ANSWER ALL THE QUESTIONS:

 $10 \times 2 = 20$

- 1. Define stirling no of I kind.
- 2. Draw the Ferrers graph for $\lambda = (544311)$. Also find λ' .
- 3. Define a binomial number.
- 4. Give the value of the complete homogenous symmetric function h_4 .
- 5. How many ways one can move from the point (0,0,0) to (a,b,c) through neighbouring points.
- 6. State Cauchy's theorem.
- 7. Find the permanent of $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
- 8. State Euler function.
- 9. When does a circular word have primitive period?.
- 10. Define G-equivalence.

SECTION B

ANSWER ANY **FIVE** QUESTONS:

 $5 \times 8 = 40$

- 11. Show that there exists a bijection between the following two sets:
 - (a) The set of *n*-tuples on *m* letters without repetition.
 - (b) The set of injections of an *n*-set into an *m*-set.

Prove that the cardinality of each of these sets is m (m-1) (m-2) ... (m-n+1).

- 12. Write down the partition of 2,3,4,5 and derive the recurrence formula for P_n^m .
- 13. Prove that the elements f of R[t] given by $f = \sum_{k=0}^{\infty} a_k t^k$ has an inverse in R[t] if and only if a_0 has an inverse in R.
- 14. Describe the Monomial symmetric function and the Complete homogenous symmetric function.
- 15. State and prove multinomial theorem on a commutative ring A.
- 16. Derive sieve formula. How many numbers between 1 and 100 are not divisible by 2,3 or 5.
- 17. There are 20 marbles of the same size but of different colors 1 red, 2 blue, 2 green, 3 white, 3 yellow, 4 orange and 5 black in an urn. Find the number of ways of arranging 5 Marbles from this urn in a row.
- 18. Define rook polynomial and show that $R(t,c) = t (R(t, C_{dd})) + R(t, C_d^{-1})$.

SECTION C

ANSWER ANY TWO QUESTIONS:

2x20 = 40

- 19. (a)Prove that the cardinality of the set of combination of m symbols taken n at a time with repetition permitted is $\frac{[m]^n}{n!}$.
 - (b)Prove that the number of arrangements n distinct objects into m distinct boxes with the objects in each box arranged in a definite order is $[m]^n$. (10+10)
- 20. (a) Derive the recurrence formula for S_n^m . Tabulate the values of S_n^m for n, m = 1, 2, 3, 4, 5. And find the Bell number.
 - (b) Explain in detail the power sum symmetric functions.

(10+10)

- 21. (a) State and prove generalized inclusion and exclusion principle.
 - (b) How many 4-letter words with distinct letters can be got from the word UNIVERSAL?
 - (c) With proper illustrations describe the problem of Fibonacci. (8+2+10)
- 22. (a)State and solve the ménage problem.
 - (b)State and prove the Burnside's lemma.

(10+10)
